Aktivierungsenergie — was ist das?

Von Michael Tausch

1. Einleitung
In den Lehrplänen einiger Bundesländer ist der Begriff Aktivierungsenergie bereits für die Mittelstufe vorgesehen; in der Oberstufe gehört er zu den Pflichtinhalt. Es gibt demzufolge kaum noch ein neueres Chemiebuch, das nicht diese oder jene Umschreibung dessen, was Aktivierungsenergie sein soll, enthielt. Die Titelfrage dieses Aufsatzes entspringt der Tatsache, daß Aktivierungsenergie in den verschiedenen Schulbüchern höchst unterschiedlich definiert wird. Die Analyse des Begriffs aus historischer und semantischer Sicht zeigt, daß die Form, in der er bisher didaktisch aufgearbeitet wurde, nicht immer die glücklichste war.

2. Was sagen die Schulbücher dazu?
In den etwas älteren Chemiebüchern taucht der Begriff Aktivierungsenergie nur selten auf, die in den letzten 3—4 Jahren erschienenen enthalten ihn dagegen durchweg. Die Definitionen bzw. Umschreibungen, die dazu geliefert werden, lassen sich auf die folgenden zwei Definitionstypen reduzieren:

a) Aktivierungsenergie ist der Energiebetrag, der anfänglich zuzuführen ist, um eine exotherm verlaufende Reaktion in Gang zu bringen [1—3].

b) Aktivierungsenergie ist die Mindestenergie, mit der die Moleküle zusammenstoßen müssen, um reagieren zu können [4—8].


[7], trägt das nicht zur Klärung sondern eher zu einer noch größeren Verwirrung bei 1). Weiterhin entnimmt der Schüler dem Energieberg-Diagramm (Abb. 1a), daß ohne Zufuhr der Aktivierungsenergie in einer Stoffportion keine Reaktion stattfindet, während das Energieverteilungs-Diagramm aussagt, daß bei jeder Temperatur einige Teilchen (und mögen es noch so wenige sein) reagieren.

Bei aller Einsicht der didaktischen und methodischen Notwendigkeit, Modelle einander gegenüberzustellen, zu erweitern oder gar einige umzustoßen, darf man Widersprüche, wie die obengenannten, nicht unkommentiert stehen lassen. Um aus dem didaktischen Dilemma, das offensichtlich bei der Behandlung des Begriffs Aktivierungsenergie herrscht, herauszufinden, ist es sinnvoll, eine kurze historische Betrachtung diesbezüglich anzustellen.

3. Die Historie des Begriffs Aktivierungsenergie

Die als „Arrhenius-Gesetz“ bekannte Beziehung zwischen der Geschwindigkeitskonstanten k einer Reaktion und der absoluten Temperatur T, scheint in ihrer allgemeinen Form (1) zum ersten Mal empirisch von J. J. Hood (1878) entdeckt worden zu sein [9].

\[ k = A \cdot e^{-E/R T} \]  
\( (1) \)

A und E sind hier Konstanten, R ist die Gaskonstante. J. H. van’t Hoff (1884) fand durch die Zusammenfassung einer großen Zahl von experimentellen Daten heraus, daß sich die Reaktionsgeschwindigkeit bei vielen Reaktionen verdoppelt bis vervierfacht, wenn die Temperatur um 10°C erhöht wird (Reaktionsgeschwindigkeit-Temperatur-Regel oder RGT-Regel). In seinem Buch „Études de dynamique chimique“ [10] suchte er auch nach einer mathematisch-theoretischen Beschreibung dieser Regel und kam auf die Gleichung (2), über die er selbst sagt: „Diese Gleichung liefert nicht die gewünschte Beziehung zwischen dem Wert von k (der ‚Reaktionsgeschwindigkeit‘) und der Temperatur; sie zeigt jedoch, daß diese Beziehung die folgende Form hat:

\[ \frac{d \log k}{dT} = A \cdot B T^2 \]  
\( (2) \)

A und B werden in der Gleichung (2) als Konstanten betrachtet. Diese Gleichung entspricht formal der logarithmisch und differenzierten Gleichung (1), die J. J. Hood gefunden hatte.


Diese Vorstellung erlaubt es, den Konstanten A und E aus der Gleichung (1) eine Deutung zu geben:

\[ k = A \cdot e^{-E_\text{exp}/R T} \]  
\( (1') \)

Zum präexponentiellen Faktor A konnte Arrhenius 1889 noch nicht viel sagen; er bemerkte aber schon damals, daß A temperaturabhängig sein könnte, also A(T). Die temperaturunabhängige Größe exp, experimentelle Aktivierungsenergie genannt, deute Arrhenius als die Höhe der Energieschwelle, die überwunden werden muß, damit die Reaktion stattfindet. Das wäre mit anderen Worten die Wärmemenge, die nötig ist, um „inaktiven“ Edukt-Moleküle in „aktive“ Moleküle zu überführen.

Diese Deutung der Aktivierungsenergie ist nicht nur in einigen Schulbüchern vertreten (siehe Definition a am Anfang dieses Aufsatzes), sie hat sich auch in der Fachliteratur weitgehend durchgesetzt, ist aber „by no means simple and straightforward“ [12], sondern eher „misterious and difficult“ [13], weil Aktivierungsenergie heute kein einheitlicher Begriff mehr ist. Genauer gesagt war es auch nie ein einheitlicher Begriff, denn schon Arrhenius bezieht im weiteren Verlauf seiner betriebenen Arbeit [11] auch statistische Gesichtspunkte in die Deutung der Aktivierungsenergie ein: Es reagieren nach seiner Hypothese beim Zusammenstoß nur die Teilchen, deren Energie eine der „ak-
tiven Form entsprechende Mindestenergie $E_{\text{exp}}$ über- 

schreitet. Nach Boltzmann ist der Anteil solcher Teil-

chen bezogen auf die gesamten Teilchen einer Stoff-

portion durch die folgende Gleichung gegeben:

$$n_a = \frac{e^{-E_{\text{exp}}/RT}}{n_{\text{tot}}}$$

(3)

Die Gleichung (3) steht in keinem Widerspruch mit 
der besser bekannten Gleichung (1'), ist doch die Ge-

schwindigkeitskonstante $k$ proportional zum Anteil 
der „aktiven“ Teilchen (Arrhenius-Hypothese). 
Trotzdem kann man jetzt sagen, daß bei Arrhenius 
auch die Quelle der Deutung, die in Definitionen des 
Typs b) vertreten ist, liegt. Hiernach wird die Aktivie-
rungsenergie als Mindestenergie verstanden, die rea-
gierende Teilchen haben müssen.

Die beiden Arrheniusschen Deutungen der Aktivie-
rungsenergie sind nicht ohne weiteres miteinander 
verträglich, zunächst „lebte“ man aber damit. Wie 
bei so vielen anderen Begriffen in der Chemie war 
am man anfangs nicht so sehr an der „semantischen Sau-

berkeit“ des neuen Begriffs interessiert wie vielmehr 
an seiner praktischen Nützlichkeit.

Nun erwies sich der neue Begriff für die experimentell 
arbeitenden Chemiker tatsächlich als äußerst nütz-
lich. Als erstes konnten mit Hilfe der „Arrhenius-
Gleichung“ (1') experimentell Aktivierungenergien 
bestimmt und somit ein numerisches Maß für die 
Temperaturempfindlichkeit der Geschwindigkeit ei-

ner Reaktion ermittelt werden. Man verwendet hierzu 
die logarithmierte Form der Gleichung (1'):

$$\ln k = \ln A - \frac{E_{\text{exp}}}{RT}$$

(4)

Die Geschwindigkeitskonstante $k$ einer Reaktion wird 
bei verschiedenen Temperaturen experimentell ermit-

Abb. 3. Berechnung der Aktivierungsernergie durch Auswertung experimen-
teller Meßdaten

<table>
<thead>
<tr>
<th>Reaktion: $(\text{CH}_3)_2\text{C} - \text{Cl} + \text{H}_2\text{O} \rightarrow (\text{CH}_3)_2\text{C} - \text{OH} + \text{HCl}$</th>
<th>Lösungsmittel: Ethanol (Ethanol : Wasser = 80 : 20)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperatur</td>
<td>exp. Meßdaten</td>
</tr>
<tr>
<td>$\text{in } ^\circ\text{C}$</td>
<td>$k \cdot 10^3$</td>
</tr>
<tr>
<td>8</td>
<td>3,12</td>
</tr>
<tr>
<td>16</td>
<td>9,76</td>
</tr>
<tr>
<td>25</td>
<td>32,9</td>
</tr>
<tr>
<td>35</td>
<td>11,7</td>
</tr>
<tr>
<td>45</td>
<td>374</td>
</tr>
</tbody>
</table>

Die Steigung $m$ der angenäherten Geraden wird 
graphisch bestimmt und daraus die experimente-
telle Aktivierungsernergie $E_{\text{exp}}$ berechnet. In 
Abb. 3 sind die entsprechenden Daten für die Hydro-
lyse von tertärem Butylchlorid in 80%igem Ethanol 
zusammengefaßt und der Rechenweg erläutert.

A. Marcelin (1915) verband als erster den Begriff der 
Aktivierungsernergie mit der Potentialenergie-Ober-
fläche oder -Hyperfläche eines reagierenden chemi-
ischen Systems [14]. Diesbezüglich haben sich in der 
Literatur die drei Darstellungsformen aus Abb. 4 ein-
gebürgert.

Im perspektivischen Diagramm aus Abb. 4a ist die 

Das Konturen-Diagramm aus Abb. 4b kann als Projektion in die Ebene eines perspektivischen Diagramms von der Art des obenbesprochenen angesehen werden. Die Kurven bestätigen hier Energie-Linien gleicher Höhe (,,Höhenlinien ''). Der günstigste Reaktionsweg führt auch hier aus dem Tal der Edukte X + YZ über den Sattelpunkt P in das Tal der Produkte XY + Z.


Der erste, der dem Begriff Aktivierungsentnergie eine klare, eindeutige Interpretation gab (allerdings nur für bimolekulare Reaktionen) war R. C. Tolman (1920). Durch Kombination der beiden Deutungsmöglichkeiten, die Arrhenius ' Artikel aus dem Jahre 1889 zuläßt, also durch Zusammenfassung des in Definition a) und Gleichung (1') enthaltenen „Schwellenenergie-Aspekts“ und des in Definition b) und Gleichung (3) enthaltenen „statistischen Aspekts“, gelangte Tolman zu der folgenden Definition [15]:

$$E_{\text{exp}} = E^* - E$$  \hspace{1cm} (5)


Die Energiehöhe $E^*$ zwischen den Edukten und den Produkten der hier die Bedeutung der Aktivierungsentnergie zukommt, kann entweder rein quantenmechanisch oder semiempirisch berechnet werden. Der Unterschied besteht darin, daß in rein quantenmechanischen Berechnungen (auch ab-initio-Rechnungen genannt) nur die Wellenfunktionen der Elektronen und die vorgegebenen Kernkoordinaten eingegeben werden (also keine experimentellen Parameter), während bei semiempirischen Berechnungen auch experimentelle Größen wie Dissoziationsenergien, Ionisierungsenergien, Anregungsentnergien usw. einbezogen werden.

Die ersten Berechnungen von Aktivierungsentnergien wurden von E. Eyring und M. Polanyi (1931) durchgeführt und sind semiempirischer Art [19]. Der experimentelle Parameter, den sie in ihre Rechnungen einbezogen, ist die Dissoziationsenergie der in Frage kommenden Teilchen. (Dissoziationsenergie wird hier als die Summe der Dissoziationswärme und der Nullpunktenergie des Systems verstanden.) Für die exotherme Reaktion:

$$\text{H} + \text{HBr} \rightarrow \text{H}_2 + \text{Br}$$ 
$$\Delta H = -64,3 \text{ kJ/mol}$$

erhielten sie das Konturendiagramm aus Abb. 6. Die Energiendifferenz zwischen dem Sattelpunkt und der Energie des Eduktssystems beträgt 108,7 kJ/mol; der experimentell bestimmte Wert für die Aktivierungsentnergie dieser Reaktion beträgt 78,6 kJ/mol. Auch bei den anderen von Eyring und Polanyi berechneten Reaktionsbeispielen ist die Übereinstimmung zwi-

Rein quantenmechanische Berechnungen von Aktivierungsgenergien wurden erst viel später möglich, weil die Anforderungen an die Rechengeschwindigkeit der Computer hier noch viel größer ist. Die ersten Rechnungen stammen ebenfalls von Polanyi und Mitarbeitern (1965) und beziehen sich auf die Reaktion:

\[ \text{H}^+ + \text{H}_2 \rightarrow \text{H}_2 + \text{H}^- \]

Der berechnete Wert der Aktivierungsgenergie beträgt 36,8 kJ/mol, die experimentellen liegen zwischen 29,3 und 41,8 kJ/mol. Diese gute Übereinstimmung darf aber nicht darüber hinwegtäuschen, daß auch heute noch, selbst mit den schnellsten Computern, nur Systeme, mit relativ wenig Elektronenfunktionen auf diese Art berechnet werden können. Die für die Praxis interessanten Reaktionen scheiden da weitgehend aus. Seit 1965 werden Aktivierungsgenergien auch im Rahmen der molekularen Dynamik berechnet [20]. Es handelt sich hierbei um ein gemischtes Verfahren: Man benutzt die Energiehyperfläche eines reagierenden Systems, also das Ergebnis z. B. semiempirischer Rechnungen; darüber hinaus führt man eine statistische Aufarbeitung des Teilchenensembles einer Stoffportion durch, die im wesentlichen aus folgenden Schritten besteht: man gibt für die reagierende Stoffportion Anfangsparameter ein (relative Geschwindigkeiten der Teilchen, Schwingungs- und Rotationsenergien der Teilchen und Stoßparameter — siehe Abb. 7) und nimmt an, daß diese Parameter Boltzmann-verteilt sind; durch Herausmitteln nach der Monte-Carlo-Methode trifft man eine Auswahl der Anfangsparameter, d. h. man wendet sie und baut sich so mehrere Sätze von Anfangsparametern auf; für ca. tausend solcher Anfangsparameter-Sätze berechnet man dann die Stoßtrajectorien, d. h. die Wege repräsentativer Elementsysteme auf der Energiehyperfläche; eine weitere statistische Verarbeitung dieser Trajectorien (die hier nicht mehr im Detail beschrieben wird) liefert dann die Reaktionswahrscheinlichkeit, die Aktivierungsgenergie und den präexponentiellen Faktor in der Arrhenius-Gleichung (1'). Das Verfahren ist ausführlich in Lit. [12] beschrieben. Für die Reaktion:

\[ \text{H}^+ + \text{H}_2 \rightarrow \text{H}_2 + \text{H}^- \]

wurde auf diese Weise eine Aktivierungsgenergie von 31,1 kJ/mol erhalten. Die experimentellen Werte, die man als die besten ansieht [12], liegen bei 31,3±4,2 kJ/mol.

Versucht man, den Unterschied zwischen den semiempirischen und den dynamischen Verfahren so herauszudestilieren, daß ihn auch Nicht-Quantenmechaniker verstehen, so ergibt sich folgendes: In semiempirischen (und selbstverständlich auch rein quantenmechanischen) Rechnungen werden die Zustände des reagierenden Systems auf dem ganzen Reaktionsweg als quantifiziert angenommen, in dynamischen Rechnungen sind die Anfangsparameter quantifiziert, nicht aber die Reaktionstrajectorien.

M. Menzinger and R. Wolfgang griffen 1969 die Tolman-Deutung der Aktivierungsgenergie auf und führten unter Berücksichtigung der Gleichung (5) Rechnungen durch [21]. Erwartungsgemäß kamen sie zu sehr guten Ergebnissen und konnten zeigen, daß \( E_{\text{exp}} \) zwar leicht temperaturabhängig (!) ist, das Arrhenius-Gesetz aber dennoch eine sehr gute Nähe rung darstellt. Zu ähnlichen Ergebnissen kamen auch die Autoren neuerer Arbeiten aus den letzten fünf Jahren [13, 16].

In jüngster Zeit werden mehr und mehr auch Nicht-Gleichgewichtsstrukturen untersucht, in denen das „Boltzmannsche Ordnungsprinzip“, das zwar eine enorme Vielfalt von Strukturen zu beschreiben vermag, darunter auch so komplexe und von einer so „zerbrechlichen Schönheit“ wie Schneekristalle [22], nicht mehr gilt. Es ist klar, daß dann auch die Arrhenius-Gleichung, die ja die Hypothese der Boltzmannschen Verteilung beinhaltet, nicht mehr in ihrer „historischen“ Form gelten kann. Welches Schicksal der Begriff Aktivierungsgenergie in der irreversiblen Thermodynamik haben wird, ist noch ungewiß, weil er in den Arbeiten dazu kaum auftaucht.
4. Zur Semantik des Begriffs Aktivierungsernergie

4.1 Die Aktivierungsernergie ist eine phänomenologische Größe

und kann aus der Steigung eines „Arrhenius-Plot“, d. h. einer Geraden, in der ln (k) (der natürliche Logarithmus der Geschwindigkeitskonstanten k) gegen 1/T (dem reziproken Wert der absoluten Temperatur T) aufgetragen ist, berechnet werden. Sie wird experimentell nach der in Teil 3 beschriebenen Methode bestimmt. Der numerische Wert der Aktivierungsernergie ist ein Maß für die Geschwindigkeit einer bestimmten Reaktion bei einer bestimmten Temperatur, aber auch ein Maß für die Temperaturempfindlichkeit der Reaktionsgeschwindigkeit, wie in Tab. 1 zu sehen ist: die Reaktionsgeschwindigkeit verdoppelt sich bei einem Temperaturanstieg von 10°C, wenn die Aktivierungsernergie der Reaktion ca. 50 kJ/mol beträgt und vervierfacht sich bei einem Aktivierungsernergie-Wert von ca. 110 kJ/mol. Ist die Aktivierungsernergie einer Reaktion kleiner als 40 kJ/mol so verläuft sie bei Zimmertemperatur so schnell, daß ihre Geschwindigkeit nicht (oder nur in speziellen Apparaturen) gemessen werden kann; sie ist größer als 120 kJ/mol, so kann die Reaktionsgeschwindigkeit bei Zimmertemperatur nicht mehr gemessen werden, weil die Reaktion zu langsam verläuft.

4.2 Die Aktivierungsernergie ist eine individualisierbare molekulare Größe,

d. h. sie kann auf ein Teilchensystem (ein reagierendes Teilchenpaar) bezogen werden. Das geschieht jedenfalls dann, wenn man sie als Höhe des Paßübergangs zwischen dem Eduktteil und dem Produktteil deutet und sie in dieser Interpretation rein quantenmechanisch oder semiempirisch berechnet. So nützlich diese Deutung auch sein mag, sie verleitet leicht dazu, zu übersehen, daß bei jeder Temperatur ein bestimmter Teil der Eduktmoleküle (und sei er noch so klein) in Produktmoleküle übergeht. In Verbindung mit Energieprofil-Diagrammen wie das aus Abb. 5 ist die Aktivierungsernergie zwar eine individuell interpretierbare Größe, keinesfalls aber ein Ausdruck für die Vielfalt der energetischen Möglichkeiten, die für die Teilchen einer Stoffportion existieren.

4.3 Die Aktivierungsernergie ist eine statistische Größe,

weil sie als Differenz zweier statistischer Größen definiert werden kann: Sie ist die Differenz zwischen der mittleren Energie aller zu einem Zeitpunkt und bei einer gegebenen Temperatur gerade in Produkte abregiernenden Teilchen und der mittleren Energie aller Edukt-Teilchen [13, 15].

4.4 Die Aktivierungsernergie ist an die Hypothese eines nicht-klassischen Gleichgewichts gebunden.


4.5 Die Aktivierungsernergie ist eine zusammengesetzte Größe.

Der Vollständigkeit halber sei erwähnt, daß die Anwendung der thermodynamischen Gleichungen auf die Hypothese des aktivierten Komplexes und der Existenz eines echten dynamischen Gleichgewichts zwischen den Teilchen des aktivierten Komplexes und den Edukt-Teilchen zu einer Auftrennung der freien Aktivierungsenthalpie AG in die Aktivierungsenthalpie ΔH und die Aktivierungsentropie ΔS führt [6, 13]:

\[ AG = ΔH - TΔS \]  

Die aus der Thermodynamik bekannten Bedeutungen von G, H und S werden übernommen und auf den Bil- dungsprozeß des aktivierten Komplexes übertragen. Wenn man den Entropieverlust und den reißt entropischen Faktor (unters als B(T) notiert) als neuen reißt entropischen Faktor A(T) zusammenfaßt:

\[ k = B(T) \cdot e^{-ΔS/RT} = B(T) \cdot e^{-ΔH/RT} \cdot e^{-ΔS/RT} \]

so erhält man die Gleichung (8), die sich nur durch die Umbenennung von E_{\text{ex}} in ΔH von der „historischen“ Arrhenius-Gleichung (1') unterscheidet (daß A temperaturabhängig sein könnte, hätte schon Arrhenius vermerkt). Die Aktivierungsenthalpie ΔH ist aber entgegen Christens Behauptung [6] auch bei Reaktionen in festen und flüssigen Stoffen zahlenmäßig nicht gleich mit der experimentellen Aktivierungsernergie E_{\text{ex}}. Für bimolekulare Reaktionen bei kon-
Der Term $RT$, der zur Aktivierungs enthalpie addiert werden muß, ist im Grunde eine Kon sequenz des unter 4.4 besprochenen semantischen Aspekts der Aktivierungsenergie. Mit der oben dargestellten Aufspaltung der Aktivierungsenergie ist die Frage nach ihrer Semantik also nicht gelöst. Man muß vielmehr den phänomenologischen, den molekularen und den statistischen Aspekt der Aktivierungsenergie im Auge haben, wenn man verstehen will, was sie bedeutet.

5. Gibt es eine bessere didaktische Lösung?

Auf die Unzulänglichkeiten bei der didaktischen Aufarbeitung des Begriffs Aktivierungsenergie in den Schulbüchern wurde in Teil I hingewiesen. Ihre Ursache liegt jeweils in der einseitigen Darstellung des Begriffs unter Missachtung eines Teils seiner semanti schen Aspekte. Eine Alternative zu den Schulbüchern wird hier zur Diskussion gestellt:


Auf einer höheren Stufe der curricularen Spirale bi tet sich die in Abb. 8 dargestellte Deutung der Aktivierungsenergie an. Die Kurve aus Abb. 9a stellt die Energieverteilung in einer Stoffportion (oder einem Stoffportionsgemisch aus Edukten einer Reaktion) dar. Sie zeigt, daß nicht alle Teilchen die gleiche Ener gie haben. Die meisten Teilchen haben eine Energie, die dem Abszissenwert des Hochpunkts entspricht und dieser Wert ist kleiner als die mittlere Energie aller Teilchen $E$. (Das kommt durch die Unsymmetrie der Energieverteilungskurve.) Es reagieren nur die Teilchen, deren Energie größer als eine Mindestene rgie $E_{\text{min}}$ ist, also die Teilchen, die der scharfier ten Fläche zuzuordnen sind. Die mittlere Energie dieser reagierenden Teilchen ist $E^*$. Die Differenz aus der mittleren Energie aller reagie renden Teilchen $E^*$ und der mittleren Energie aller Teilchen $E$ heißt Aktivierungsenergie $E_a$. Wie in den beiden Teilen der Abb. 8 gezeigt wird, ist die Aktivierungsenergie temperaturunabhängig. Der Temperaturanstieg einer Stoffportion, der durch Wärmezufuhr erzeugt wird, führt zu einer neuen Energieverteilung (Abb. 8b): Die Kurve flacht ab, sowohl der $E^*$-Wert als auch der $E$-Wert rutschen nach rechts. Die Zahl der reagierenden Teilchen ist — wie die schar fitterte Fläche in Abb. 8b zeigt — jetzt größer, aber die Differenz $E_a$ genauso groß wie in Abb. 8a. Bei höher er Temperatur ist also die Reaktionsgeschwindigkeit größer, nicht aber die Aktivierungsenergie.

Diese Deutung der Aktivierungsenergie, die für die deutschsprachige Schulbuchliteratur neu wäre, kommt Tolmans Interpretation [15] am nächsten und hat folgende Vorteile:

— sie trägt der Tatsache, daß die Aktivierungsenergie eine phänomenologische, temperaturunabhängige Größe und eine statistische Größe ist, Rechnung;
— sie hebt den Teilchenaspekt von reagierenden Stoffportionen hervor, verdeutlicht aber gleichzeitig, daß die Stoffportionen aus energetischer Sicht ein statistisches Ensemble von Teilchen mit verschiedenen Energien sind;
sie ist kompatibel mit Energieberg-Diagrammen, in denen die Aktivierungsenergie auch als Differenz aufgetaucht (siehe Abb. 9a und 9b): ein Energieberg-Diagramm zeigt den Reaktionsweg nur einer bestimmten Sorte von Teilen aus einer Stoffportion (z. B. aller Teilen deren Energie gleich der mittleren Energie $\bar{E}$ ist);

---

sie läßt damit auch zu, die Aktivierungsenergie als individualisierbare, molekulare Größe zu betrachten, im Sinne einer Schwellenergie, die ein reagierendes Elementärsystem überwinden muß;

---

sie ist didaktisch wertvoll, weil die Widersprüche, die in Teil 2 aufgezeigt wurden, dadurch aufgehoben werden und sowohl der Temperatur- als auch der Katalysatoreffekt auf die Reaktionsgeschwindigkeit an- schaulich erklärt werden können.

Die problemlose Korrelierbarkeit der Energieverteilungs-Diagramme mit den Energieberg-Diagrammen bei dieser Deutung der Aktivierungsenergie wird in Abb. 9 ersichtlich: In Gegenwart eines Katalysators und bei einer bestimmten Temperatur ist die mittlere Energie der reagierenden Teilen $E^*$ kleiner als in der unkatalysierten Reaktion. Dadurch wird die Aktivierungsenergie $E_a$ der unkatalysierten Reaktion auf $E^*$ herabgesetzt (Abb. 9a). Im Energieberg-Diagramm widerspiegelt sich das darin, daß ein Durchschnitts-Teilchenpaar in der katalysierten Reaktion einen niedrigeren Energieberg überwinden muß als in der unkatalysierten (Abb. 9b).


Literatur


[22] I. Prigogine, Vom Sein zum Werden. Piper, München, Zürich, 93 (1979)


Anschrift des Verfassers:
Dipl.-Ing. Dr. Michael Tausch, Am Schwarzen Berg 31, 28857 Syke