The molar volume \mathbf{V}_{m}


```
What happens if you fill 18 g (= 18 mL) of water into a balloon and heat it?
In gases the particles are very far away from each other, so the same number of particles needs more room.
Gases are difficult to weigh with a scale. It is easier to measure the volume of a gas.
Avogadro said that 1 mole of particles of any gas has a volume of 22.4 L at \(0^{\circ} \mathrm{C}\) and normal pressure. This is called molar volume \(\mathbf{V}_{\mathrm{m}}\).
\[
V_{m} \text { (gas) }=22.4 L
\]
```

Can you imagine what happens if you heat this volume of a gas to 20C?
At $20^{\circ} \mathrm{C}$ one mole of any gas has a volume of 24 L (at normal pressure).

Exercises

1. How many moles of carbon dioxide gas are there in a volume of 2.24L?
2. How many moles of oxygen gas are there in a volume of 2.24L?
3. Some time ago zeppelines were filled with hydrogen gas.

A small zeppelin has a volume of 44800 L .
a) How many moles of hydrogen gas fit into it?
b) How much does this volume of gas weigh?

