Silicones –

Diverse properties and applications

- \rightarrow Adjusted by viscosity
- → Properties unaffected by changes in temperature
- \rightarrow Biological tolerance
- \rightarrow High stability to weathering

Contradictory properties

- \rightarrow Transparency/impermeability to light
- → Electrically insulating/conducting
- \rightarrow Resistance to high/low temperatures
- → Adhesive/nonstick properties
- → Hydrophobic/hydrophilic
- → Antifoams/foam stabilizers

Other applications

- \rightarrow Fire protection
- → Shock absorbers
- \rightarrow Restoration/dental prosthetics

Silicones – Biological tolerance

Si-O and Si-C bonds in silicone polymers Physiologically inert

Medical... (Insulin pump, catheters...)

Pharmacological... (Tablets/capsule coating, toothpastes)

Cosmetics... (Creams, lipsticks...)

Silicones – Resistant to weathering

Silicone polymers: resistant to weathering, ozone and UV radiation; Stability of the SiC and SiO bonds and water repellency of silicones

Durable, scratch and UV resistant automotive finishes

Silicones – Colored or colorless

Colorless

• Refractive index determined by R (Me, Ph,....)

Pigmented

- Almost any color
- Control over properties (Elastic, ceramifying, corrosion protection)

Silicones – Structural glazing

Extremely powerful, flexible combinations of metal and glass make innovative structures possible

